Balanced spiking neural networks with NumPy

Balanced spiking neural networks are a cornerstone of computational neuroscience. They make for a nice introduction into spiking neuronal networks and they can be trained to store information (Nicola & Clopath, 2017). Here I will present a Python port I made from a MATLAB implementation by Nicola & Clopath and I will go through some of its features. We only need NumPy.

import numpy as np
from numpy.random import rand, randn
import matplotlib.pyplot as plt


def balanced_spiking_network(dt=0.00005, T=2.0, tref=0.002, tm=0.01,
                             vreset=-65.0, vpeak=-40.0, n=2000, 
                             td=0.02, tr=0.002, p=0.1, 
                             offset=-40.00, g=0.04, seed=100, 
                             nrec=10):
    """Simulate a balanced spiking neuronal network

    Parameters
    ----------
    dt : float
        Sampling interval of the simulation.
    T : float
        Duration of the simulation.
    tref : float
        Refractory time of the neurons.
    tm : float
        Time constant of the neurons.
    vreset : float
        The voltage neurons are set to after a spike.
    vpeak : float
        The voltage above which a spike is triggered
    n : int
        The number of neurons.
    td : float
        Synaptic decay time constant.
    tr : float
        Synaptic rise time constant.
    p : float
        Connection probability between neurons.
    offset : float
        A constant input into all neurons.
    g : float
        Scaling factor of synaptic strength
    seed : int
        The seed makes NumPy random number generator deterministic.
    nrec : int
        The number of neurons to record.

    Returns
    -------
    ndarray
        A 2D array of recorded voltages. Rows are time points,
        columns are the recorded neurons. Shape: (int(T/dt), nrec).
    """

    np.random.seed(seed)  # Seeding randomness for reproducibility

    """Setup weight matrix"""
    w = g * (randn(n, n)) * (rand(n, n) < p) / (np.sqrt(n) * p)
    # Set the row mean to zero
    row_means = np.mean(w, axis=1, where=np.abs(w) > 0)[:, None]
    row_means = np.repeat(row_means, w.shape[0], axis=1)
    w[np.abs(w) > 0] = w[np.abs(w) > 0] - row_means[np.abs(w) > 0]

    """Preinitialize recording"""
    nt = round(T/dt)  # Number of time steps
    rec = np.zeros((nt, nrec))

    """Initial conditions"""
    ipsc = np.zeros(n)  # Post synaptic current storage variable
    hm = np.zeros(n)  # Storage variable for filtered firing rates
    tlast = np.zeros((n))  # Used to set  the refractory times
    v = vreset + rand(n)*(30-vreset)  # Initialize neuron voltage

    """Start integration loop"""
    for i in np.arange(0, nt, 1):
        inp = ipsc + offset  # Total input current

        # Voltage equation with refractory period
        # Only change if voltage outside of refractory time period
        dv = (dt * i > tlast + tref) * (-v + inp) / tm
        v = v + dt*dv

        index = np.argwhere(v >= vpeak)[:, 0]  # Spiked neurons

        # Get the weight matrix column sum of spikers
        if len(index) > 0:
            # Compute the increase in current due to spiking
            jd = w[:, index].sum(axis=1)

        else:
            jd = 0*ipsc

        # Used to set the refractory period of LIF neurons
        tlast = (tlast + (dt * i - tlast) *
                 np.array(v >= vpeak, dtype=int))

        ipsc = ipsc * np.exp(-dt / tr) + hm * dt

        # Integrate the current
        hm = (hm * np.exp(-dt / td) + jd *
              (int(len(index) > 0)) / (tr * td))

        v = v + (30 - v) * (v >= vpeak)

        rec[i, :] = v[0:nrec]  # Record a random voltage
        v = v + (vreset - v) * (v >= vpeak)

    return rec


if __name__ == '__main__':
    rec = balanced_spiking_network()
    """PLOTTING"""
    fig, ax = plt.subplots(1)
    ax.plot(rec[:, 0] - 100.0)
    ax.plot(rec[:, 1])
    ax.plot(rec[:, 2] + 100.0)
Three neurons in the balanced spiking neural network.

The weight matrix

At the core of any balanced network is the weight matrix. We define it on line 54 to 58. Initializing it from a normal distribution and normalizing the row mean makes sure that excitation and inhibition are in balance. That is what keeps the network spiking irregularly although the input to the network remain constant. The constant input to the network is the offset parameter.

Refractory period

The refractory period is a time window where no action potential can be generated. We achieve this by setting the voltage to a low value right after the spike and then we do not update the voltage of the spike for a given time. This time window is given be tref. We update the voltage on line 76. In the same line we check how long ago the last spike occurred with the expression (dt * i > tlast + tref). Therefore, we need to track the most recent spike time with tlast. Of course we have some other things to do when a neuron reaches the spiking threshold vpeak. First we set the voltage to a value well above the threshold on line 99. This is purely visual to give a spiky appearance in the recording. So right after we recorded on line 101 we set the voltage to its reset value vreset.

Play around with some of the parameters. You can find the code here: https://gist.github.com/danielmk/9adc7409f40a076ffec0cdf85dea4519

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s