Animations with Julia

Creating great looking animations in Julia is shockingly easy thanks for the Plots package and some macro magic. Here we will learn how to turn data into high quality animations. We will learn about the @animate macro, frames and the gif function.

Two Steps to Animations

To create animations we simply generate frames with the @animate macro and then generate a file with the gif function. Both are part of the Plots package from Julia, so we have to start with using Plots to make that package available. Next create the data we will plot, which is a simple sine wave. Then we generate the frame with the @animate macro and animate them with the gif function. This is the code and the resulting animation.

using Plots

x = collect(1:0.1:30)
y = sin.(x)
df = 2

anim =  @animate for i = 1:df:length(x)
    plot(x[1:i], y[1:i], legend=false)

gif(anim, "tutorial_anim_fps30.gif", fps = 30)

Macros and Meta-Programming

The @animate macro deserves some extra attention, because it looks like magic. Macros are related to a concept called meta-programming. In Julia, all code is a data structure that can be manipulated in a similar way to all other data structures. This effectively means that we can write code that manipulates our code. That’s what a macro is, a function that modifies code. In our case, the code being modified is the for loop behind our @animate macro. It is modified in a way that it catches the frame at the end of each loop iteration and saves it into anim. We can create code that does the same job ourselves.

anim = Plots.Animation()
for i = 1:df:length(x)
    plot(x[1:i], y[1:i], legend=false)

gif(anim, "tutorial_anim_fps30.gif", fps = 30)

We use the Plots.Animation() function to create our animation object where we will store our frames. During the for loop we then call Plots.frame(anim) to store the frame after each iteration in our anim object. These are the essential steps that the @animate macro takes care of. If you want to learn what the macro does in detail you can call @macroexpand on it.

@macroexpand @animate for i = 1:df:length(x)
    plot(x[1:i], y[1:i], legend=false)

There is another macro that is even more convenient. The @gif macro. It saves us from having to call gif() on our anim object.

@gif for i = 1:df:length(x)
    plot(x[1:i], y[1:i], legend=false)

This directly displays the animation if interactive Julia is available for it. The downside of this is that we do not save the animation to disk and we do not have an anim object available to do more animations later. It is most useful to quickly troubleshoot animations interactively.

Beyond plot()

The @animate macro supports animations of anything that can be plotted with Plots. For example, we can animate a heatmap.

anim = @animate for i = 1:100
    mat = rand(0:100, 32, 32)
    heatmap(mat, clim=(0,255))

gif(anim, "tutorial_heatmap_anim.gif", fps = 10)

The frame that is being caught is the state of the active figure at the end of the for loop. The for loop itself gives us a great deal of control, how many frames we want to create. For example in the previous examples, I skipped frames with the df variable.

That’s it for animations. To learn more you can take a look at the official Plots documentation.

Animations with Matplotlib

Anything that can be plotted with Matplotlib can also be animated. This is especially useful when data changes over time. Animations allow us to see the dynamics in our data, which is nearly impossible with most static plots. Here we will learn how to animate with Matplotlib by producing this traveling wave animation.

This is the code to make the animation. It creates the traveling wave, defines two functions that handle the animation and creates the animation with the FuncAnimation class. Let’s take it step by step.

import numpy as np
from matplotlib.animation import FuncAnimation
import matplotlib.pyplot as plt

# Create the traveling wave
def wave(x, t, wavelength, speed):
    return np.sin((2*np.pi)*(x-speed*t)/wavelength)

x = np.arange(0,4,0.01)[np.newaxis,:]
t = np.arange(0,2,0.01)[:,np.newaxis]
wavelength = 1
speed = 1
yt = wave(x, t, wavelength, speed)  # shape is [t,y]

# Create the figure and axes to animate
fig, ax = plt.subplots(1)
# init_func() is called at the beginning of the animation
def init_func():

# update_plot() is called between frames
def update_plot(i):
    ax.plot(x[0,:], yt[i,:], color='k')

# Create animation
anim = FuncAnimation(fig,
                     frames=np.arange(0, len(t[:,0])),

# Save animation'traveling_wave.mp4',

On the first three lines we import NumPy, Matplotlib and most importantly the FuncAnimation class. It will take the center stage in our code as it will create the animation later on by combining all the parts we need. On lines 5-13 we create the traveling wave. I don’t want to go into too much detail, as it is just a toy example for the animation. The important part is that we get the array yt, which defines the wave at each time point. So yt[0] contains the wave at t0 , yt[1] at t1 and so on. This is important, since we will be iterating over time during the animation. If you want to learn more about the traveling wave, you can change wavelength, speed and play around with the wave() function.

Now that we have our wave, we can start preparing the animation. We create a the figure and the axes we want to use with plt.subplots(1). Then we create a the init_func(). This one will be called whenever the animation starts or repeats. In this particular example it is pretty useless. I include it here because it is a useful feature for more complex animations.

Now we get to update_plot(), the heart of our animation. This function updates our figure between frames. It determines what we see on each frame. It is the most important function and it is shockingly simple. The parameter i is an integer that defines what frame we are at. We use that integer as an index into the first dimension of yt. We plot the wave as it looks at t=i. Importantly, we must clean up our axes with ax.clear(). If we would forget about clearing, our plot would quickly become all black, filled with waves.

Now FuncAnimation is where it all comes together. We pass it fig, update_plot and init_func. We also pass frames, those are the values that i will take on during the animation. Technically, this gets the animation going in your interactive Python console but most of the time we want to save our animation. We do that by calling We pass it the file name as a string, the resolution in dpi, the frames per second and finally the writer class used for generating the animation. Not all writers work for all file formats. I prefer .mp4 with the ffmpeg writer. If there are issues with saving, the most common problem is that the writer we are trying to use is not installed. If you want to find out if the ffmpeg writer is available on your machine, you can type matplotlib.animation.FFMpegWriter().isAvailable(). It returns True if the writer is available and False otherwise. If you are using Anaconda you can install the codec from here.

This wraps up our tutorial. This particular example is very simple, but anything that can be plotted can also be animated. I hope you are now on your way to create your own animations. I will leave you with a more involved animation I created.